Questions


August 2021 2 3 Report

477
shutterstock_517014802
pixelparticle/Shutterstock
Here's a tale of modern physics: Two scientists work at the same university in different fields. One studies huge objects far from Earth. The other is fascinated by the tiny stuff right in front of him. To satisfy their curiosities, one builds the world's most powerful telescope, and the other builds the world's best microscope. As they focus their instruments on ever more distant and ever more minuscule objects, they begin to observe structures and behaviors never before seen—or imagined. They are excited but frustrated because their observations don't fit existing theories.

One day they leave their instruments for a caffeine break and happen to meet in the faculty lounge, where they begin to commiserate about what to make of their observations. Suddenly it becomes clear to both of them that although they seem to be looking at opposite ends of the universe, they are seeing the same phenomena. Like blind men groping a beast, one scientist has grasped its thrashing tail and the other its chomping snout. Comparing notes, they realize it's the same alligator.

This is precisely the situation particle physicists and astronomers find themselves in today. Physicists, using linear and circular particle accelerators as their high-resolution "microscopes," study pieces of atoms so small they can't be seen. Astronomers, using a dozen or so new supersize telescopes, also study the same tiny particles, but theirs are waiting for them in space. This strange collision of information means that the holy grail of particle physics—understanding the unification of all four forces of nature (electromagnetism, weak force, strong force, and gravity)—will be achieved in part by astronomers.

The implications are exciting to scientists because bizarre marriages of unrelated phenomena have created leaps of understanding in the past. Pythagoras, for example, set science spinning when he proved that abstract mathematics could be applied to the real world. A similar leap occurred when Newton discovered that the motions of planets and falling apples are both due to gravity. Maxwell created a new era of physics when he unified magnetism and electricity. Einstein, the greatest unifier of them all, wove together matter, energy, space, and time.

But nobody has woven together the tiny world of quantum mechanics and the big world we see when we look through a telescope. As these come together, physicists realize they are getting very close to a single "theory of everything" that accounts for the fundamental workings of nature, the long-sought unified field theory.

About two years ago, after a presentation by the National Research Council's board on physics a.

Question 2

What is dark energy?

Answers & Comments


Add an Answer


Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Helpful Social

Copyright © 2024 EHUB.TIPS team's - All rights reserved.