Questions


December 2021 0 13 Report
✏️ARITHMETIC SERIES ============================== Directions: Find S, given the following conditions: \begin{gathered} \begin{aligned} & \bold{Formula:} \\ & \boxed{S_n = \frac{n}{2}\big[ 2a_1 + d(n-1) \big]} \end{aligned} \end{gathered}​Formula:Sn​=2n​[2a1​+d(n−1)]​​​ #1: \sf a_1 = 2 \:;\:\: d = 6 \:;\:\: n = 18a1​=2;d=6;n=18 \begin{gathered} S_{18} = \frac{18}{2} \big[ 2(2) + 6(18-1) \big] \\ \end{gathered}S18​=218​[2(2)+6(18−1)]​ \begin{gathered} S_{18} = \frac{18}{2} \big[ 2(2) + 6(17) \big] \\ \end{gathered}S18​=218​[2(2)+6(17)]​ S_{18} = 9 \big[4 + 102\big]S18​=9[4+102] S_{18} = 9 \big[106\big]S18​=9[106] S_{18} = 954S18​=954 \therefore∴ The sum of the first 18 terms of the given arithmetic series is... \Large \underline{\boxed{\tt \purple{\,954\,}}}954​​ \: #2: \sf a_1 = 5 \:;\:\: d = 9 \:;\:\: n = 20a1​=5;d=9;n=20 \begin{gathered} S_{20} = \frac{20}{2} \big[ 2(5) + 9(20-1) \big] \\ \end{gathered}S20​=220​[2(5)+9(20−1)]​ \begin{gathered} S_{20} = \frac{20}{2} \big[ 2(5) + 9(19) \big] \\ \end{gathered}S20​=220​[2(5)+9(19)]​ S_{20} = 10 \big[10 + 171\big]S20​=10[10+171] S_{20} = 10 \big[181\big]S20​=10[181] S_{20} = 1,\!810S20​=1,810 \therefore∴ The sum of the first 20 terms of the given arithmetic series is... \Large \underline{\boxed{\tt \purple{\,1,\!810\,}}}1,810​​ \: #3: \sf a_1 = 2 \:;\:\: d = 6 \:;\:\: n = 10a1​=2;d=6;n=10 \begin{gathered} S_{10} = \frac{10}{2} \big[ 2(2) + 6(10-1) \big] \\ \end{gathered}S10​=210​[2(2)+6(10−1)]​ \begin{gathered} S_{10} = \frac{10}{2} \big[ 2(2) + 6(9) \big] \\ \end{gathered}S10​=210​[2(2)+6(9)]​ S_{10} = 5 \big[4 + 54\big]S10​=5[4+54] S_{10} = 5 \big[58\big]S10​=5[58] S_{10} = 290S10​=290 \therefore∴ The sum of the first 10 terms of the given arithmetic series is... \Large \underline{\boxed{\tt \purple{\,290\,}}}290​​ \: #4: \sf a_1 = 4 \:;\:\: d = 3 \:;\:\: n = 12a1​=4;d=3;n=12 \begin{gathered} S_{12} = \frac{12}{2} \big[ 2(4) + 3(12-1) \big] \\ \end{gathered}S12​=212​[2(4)+3(12−1)]​ \begin{gathered} S_{12} = \frac{12}{2} \big[ 2(4) + 3(11) \big] \\ \end{gathered}S12​=212​[2(4)+3(11)]​ S_{12} = 6 \big[8 + 33\big]S12​=6[8+33] S_{12} = 6 \big[41\big]S12​=6[41] S_{12} = 246S12​=246 \therefore∴ The sum of the first 12 terms of the given arithmetic series is... \Large \underline{\boxed{\tt \purple{\,246\,}}}246​​ \: #5: \sf a_1 = \text-3 \:;\:\: d = 2 \:;\:\: n = 10a1​=-3;d=2;n=10 \begin{gathered} S_{10} = \frac{10}{2} \big[ 2(\text-3) + 2(10-1) \big] \\ \end{gathered}S10​=210​[2(-3)+2(10−1)]​ \begin{gathered} S_{10} = \frac{10}{2} \big[ 2(\text-3) + 2(9) \big] \\ \end{gathered}S10​=210​[2(-3)+2(9)]​ S_{10} = 5 \big[\text-6 + 18\big]S10​=5[-6+18] S_{10} = 5 \big[12\big]S10​=5[12] S_{10} = 60S10​=60 \therefore∴ The sum of the first 1p terms of the given arithmetic series is... \Large \underline{\boxed{\tt \purple{\,60\,}}}60​​ ============================== #CarryOnLearning (ノ^_^)ノ ​

Add an Answer


Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Helpful Social

Copyright © 2024 EHUB.TIPS team's - All rights reserved.